METEOROLOGY

Baldwin Hills Project February, 1978

by

Harold Raynard, Civil Engineer
County of Los Angeles
Department of County Engineer
Environmental Development Division

METEOROLOGY

Page											
<u>INTRODUCTION</u>											
<u>CLIMATE</u>											
General Description											
Climatic Record											
<u>MICROCLIMATE</u>											
<u>AIR QUALITY</u>											
RECOMMENDATIONS											
REFERENCES											
FIGURES											
Table III-1: Summary of Air Quality Standards and Data for 1981 Graph III-1: Comparative Rainfall Totals Graph III-2: Comparative Rainfall Totals Graph III-3: Rainfall Departures from the Median Map III-1: Air Monitoring Network											

METEOROLOGY

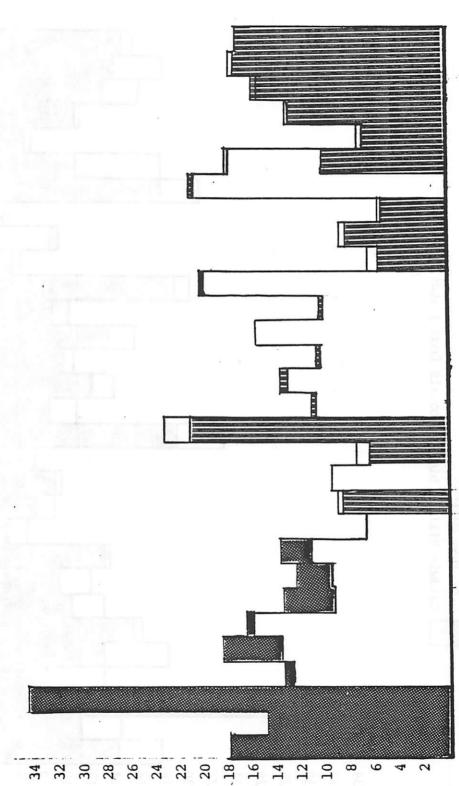
INTRODUCTION

The following section presents a general description of the climate of the Los Angeles vicinity. Data tables for precipitation and air quality were obtained from monitoring stations on-site. Temperature averages, for the lack of any on-site station, were calculated from records for the Los Angeles International Airport, 9.6 kilometers (6 miles) to the south.

CLIMATE

General Description

Southern California lies between 30 and 45 degrees north latitude on the western edge of North America. This position places Southern California under the influence of a large off-shore, semipermanent high pressure cell. During the summer months this large swirling mass of air is responsible for blocking and diverting the majority of storm systems. As winter approaches the cell migrates toward the equator allowing storms from the north and west to enter the Southland. The climate is characterized by long, hot dry summers and cool, moist winters.


The Baldwin Hills are approximately 6.4 kilometers (4 miles) from the Pacific Ocean and lie within the Maritime Fringe climatic region of Southern California (Russell, 1953). The Maritime Fringe climatic region is characterized by average temperatures rarely falling below 10 or above 21 degrees Celsius (50 and 70 degrees Fahrenheit, respectively) with annual rainfall totals between

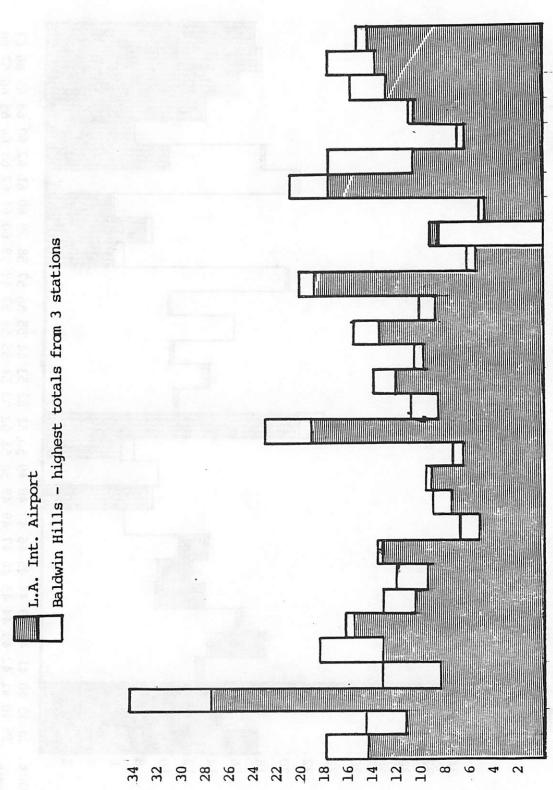
25 and 50 centimeters (10 an 20 inches). The typical wind pattern is a 11 kilometers (7 mile) per hour breeze from the west or west southwest. This wind off the Pacific Ocean brings marine air into the Los Angeles Basin producing mild year-round temperatures (NOAA, 1976). This region is cloudy or partly cloudy 222 days out of the year including 44 days with heavy fog allowing visibility of 0.4 kilometer (0.25 mile) or less.

The average temperature for the Baldwin Hills is 17.3 degrees Celsius (62.9 degrees Fahrenheit), with an average maximum of 25 degrees Celsius (76.8 degrees Fahrenheit) in September and an average minimum of 18.5 degrees Celsius (65.1 degrees Fahrenheit) in January. The highest temperature on record for the nearby international airport station occurred in September of 1963, 43.7 degrees Celsius (110 degrees Fahrenheit). The record low of -0.05 degrees Celsius (23 degrees Fahrenheit) occurred in January of 1937.

The Median annual precipitation is 27.9 centimeters (11 inches), although wide variations occur from year to year and within short distances as a result of the topography (graph III-1). Most of the precipitation falls between November and April. Comparisons of rainfall totals from the airport and the highest of the three stations records in the Baldwin Hills (Climate Record) indicates a 17 percent higher total for the Baldwin Hills (graph III-2). This condition is expected as storms move inland up the coastal plain with a precipitation increase of approximately 2.5 centimeters per kilometer (1 inch per mile) (Bailey, 1966).

- Sta. Oil Production Field office elv. 392' 1938-1946 Baldwin Hills - North side elv. 150' 1948-1968 Baldwin Hills Reservoir elv. 460' Baldwin Hills 1941-1967

INCHES OF RAINFALL


Page 3

57 58 56 57 55 56 54 55 53 54 52 53 51 52 45 46 47 48 49 50 46 47 48 49 50 51 42 43 44 45 41 Oct. 38 39 40 39 40 41 Sept.

67 68

58

RAIN YEAR

89 29 62 63 64 65 66 67 63 64 65 66 62 58 59 60 61 59 60 61 53 54 55 56 57 58 54 55 56 57 53 52 52 51 Oct. 38 39 40 41 42 43 44 45 46 47 48 49 50 Sept. 39 40 41 42 43 44 45 46 47 48 49 50 51

RAIN YEAR

INCHES OF RAINFALL

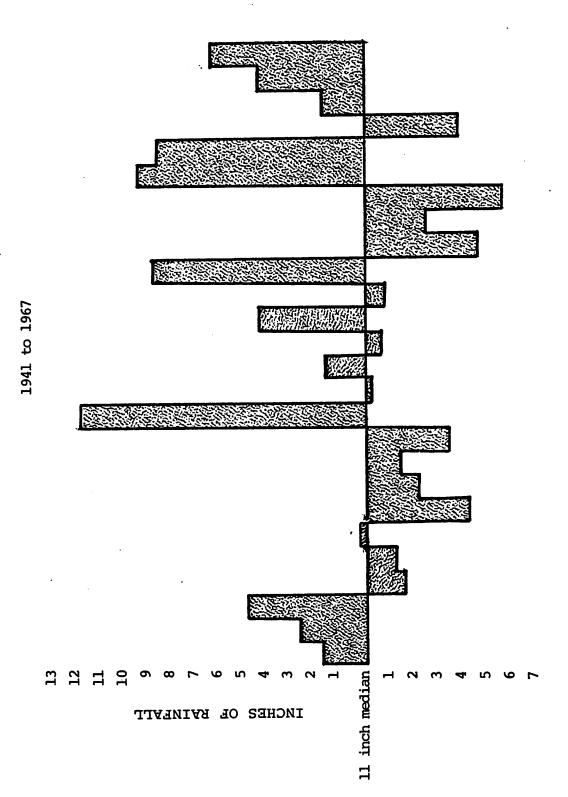
A sale 4

Climatic Record

Temperature records for the Baldwin Hills are not available, therefore, the nearby International Airport station was utilized. The Los Angeles International Airport station, elevation 29.5 meters (97 feet), is approximately 9.6 kilometers (6 miles) south of rainfall station 461, elevation 119.8 meters (393 feet), in the Baldwin Hills. Investigations of other areas have produced a constant for increase of temperature with elevation at the rate of -17.7 degrees Celsius/30.5 meters (0.27 degree/100 feet)(Landsberg, 1962). This constant along with allowances for slope and exposure should proproduce an approximate increase between the Baldwin Hills and the airport of -17 degrees Celsius (1 degree Fahrenheit).

Precipitation data was obtained from the Los Angeles County Flood Control District for the Baldwin Hills at three locations. All three stations are no longer in service (graph III-3).

MICROCLIMATE


The Baldwin Hills are one of several scattered hills and mesas projecting above the Los Angeles coastal plain and are in a proximity of 6.4 kilometers (4 miles) from the Pacific Ocean.

The Baldwin Hills contain a variety of slope, exposures and elevations 45.7 meters to 152.4 meters (150' to 500') (map II-1 and II-2). Precipitation should be expected to vary widely within short distances under the above conditions.

AIR QUALITY

Due to the proximity of the project to the ocean, air quality over

Page 5

99 67 62 63 64 65 6 63 64 65 66 0 57 58 59 60 61 58 59 60 61 62 52 53 54 55 56 53 54 55 56 57 41 42 43 44 45 46 47 48 49 50 51 42 43 44 45 46 47 48 49 50 51 52 Oct. Sept.

RAIN YEAR

Page 6

the Baldwin Hills is frequently superior to the more inland areas. Alternating land/sea breezes serve to flush out local sources of pollution. However, inverse conditions during the spring and summer help effect a rise in local pollutant levels. In general, sea breezes mitigate the local pollutants in the area, transporting them inland and down the coast.

The area has been classified as a source zone due to pollutants being directly emitted into the air from sources in the immediate vicinity. It is not a reception zone due to predominant winds coming off the ocean.

Based on South Coast Air Quality Management District statistics for 1981 in the Northwest Coastal Zone (West Los Angeles), 10 days exceeded the State Standard of 10 ppm for carbon monoxide; 8 days exceeded the State Standard of 0.25 ppm for nitrogen dioxide; 182 days exceeded the Federal Standard of 0.24 ppm (table III-1 and map III-1).

These figures become more meaningful when compared to the central zone (Downtown Los Angeles). The number of days State standards were exceeded in the Los Angeles area are followed by the Northwest Coast Zone in brackets. The figures for the Central area are:

8 days (10) exceeded the carbon monoxide level; 17 days (8) exceed ed the nitrogen dioxide level and 126 days (182) exceeded the hydrocarbons level.

•		Location	Carbon Monoxide			Ozone			Nitroge	n Dioxide	Hydrocarbons		
	Source/ Receptor Area		Max. Conc.	No. Days Std. Exceeded ^{a)}		Max. Conc.	No. Days Standard Exceeded		Max. Conc.	No. Days Std. Exceeded	Max. Conc. In	No. Days Standard Exceeded	
	No.		PPM 1-Hour	Federal >9 PPM 8-Hours	State ≥10 PPM 12-Hours	PPM 1-Hour	Federal State >12 PPM ≥.10 PPM 1-Hour 1-Hour		PPM 1-Hour	State ≥.25 PPM 1-Hour	PPM 1-Hour	Federal .24 PPM (6-9 a.m.) ^{b)}	
Page 8	1 2 3 4 5 6 7 8	Los Angeles W. Los Angeles Lennox Long Beach Whittier Reseda Burbank Pasadena	18 19 27 13 17 27 26	16 22 51 3 8 27 45	8 10 30 0 4 19 27 2	.32 23 .19 .23 .27 .25 .27	74 40 4 13 56 96 91	120 83 22 30 90 165 134 167	.45 .40 .42 .37 .38 .24 .37	17 8 12 13 11 0 9	13.5 13.6 13.4 15.2 NM 14.9 NM 9.6	126 182 262 212 NM 279 NM 276	
	9 10 11 12 13 14	Azusa Pomona Pico Rivera Lynwood Newhall Lancaster	11 12 15 31 NM 9	1 2 5 52 NM 0	0 0 2 2 29 NM 0	.35 .33 .35 .21 .29	137 97 94 15 123 82	176 137 139 41 164 133	.28 .31 .36 .32 NM .22	3 5 8 5 NM 0	12.2 NM NM 19.0 NM 7.1	25 NM NM 331 NM 94	
	18 19	La Habra Santa Ana Canyon Anaheim Los Alamitos Costa Mesa El Toro	22 NM 19 NM 15 9 <i>d)</i>	8 NM 14 NM 5	2 NM 3 NM 1 0	.27 .23 ^{c)} .26 .18 .20	60 23 32 13 6 18	92 38 65 37 28 49	.36 NM .30 NM .29 NM	8 NM 4 NM 2 NM	12.7 NM NM NM NM NM	NA NM NM NM NM	
	22 23 24 29 30 30	Norco-Corona Riverside Perris Banning Palm Springs Indio	NM 10 NM NM . 6	NM O NM NM O	NM O NM NM O	.37 .30 .24 .23 .19	101 127 118 50 57 30	167 188 174 99 124 82	NM .32 NM NM .09	NM 1 NM NM O NM	NM 14.5 NM NM 9.1 NM	NM NA NM NM NA	
	34 34 35 35 37	Fontana San Bernardino ^{e)} Redlands Yucaipa Lake Gregory	16 10 6 NM NM	0 0 0 NM NM	0 0 0 NM NM	.35 .36 .24 .27 ^{c)} .35	147 134 116 59 131	180 164 162 76 161	.19 .20 NM NM NM	O O NM NM NM	NM 8.0 NM NM	MN AN MN MN	

PPM - Parts by volume per million parts of air.

ug/m³ - Micrograms per cubic meter of air.

NM - Pollutant not monitored.

ND - No data available.

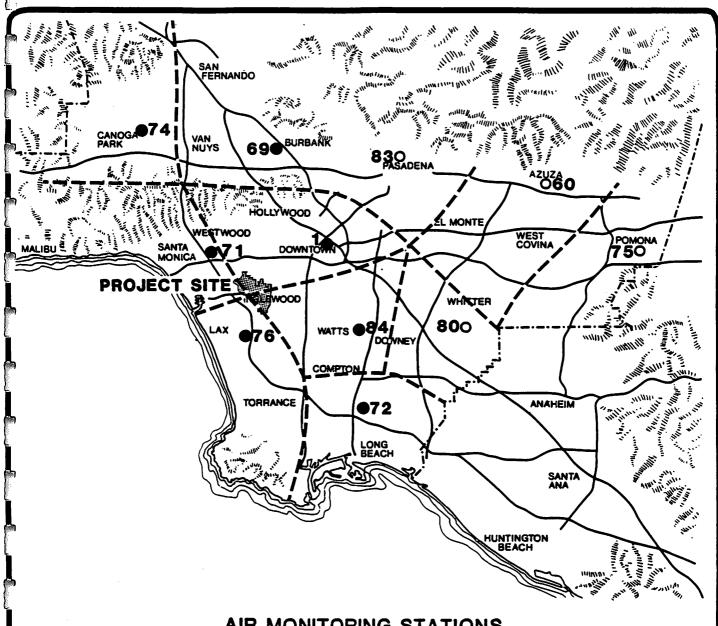
NA - Not applicable (total hydrocarbons monitored only).

a) The Federal (1-hour > 35 ppm) and State (1-hour ≥ 40 ppm) standards were not exceeded.

b) Reactive hydrocarbons (total hydrocarbons minus methane).

c) Based on six-months data (Jan. - June).

d) Eight-months data (May - Dec.).



South Coast
AIP OLIALITY, MANAGEMENT, DISTPLCT
9150 C. FLAIR DAIVE, EL NIGHT, CALIFORNIA 91701

Q	Λ
(U
	Į
	Q
۴	4

	Location	. Sulfur Dioxide			Particulates (Hi-Vol)				Lead (Hi-Vol)			Sulfate (Hi-Vol)		Visibility ^{h)}	
Source/ Receptor Area No.		Max. Conc. in PPM 1-Hour	Excee Federal >14 PPM	Standard eded ¹⁾ State 1-Hour & 24-Hours ^{g)}	Total Samples Collected	Max. Conc. ug/m ³	No. Sa Exceeded Federal >260 ug/m ³ 24-Hours	Standard	Max. Conc. ug/m ³	No. Occ Exceeded Federal 1.5 ug/m ³ Ortly. Avg.		Max. Conc. ug/m ³	No. Samples Exc. Stand. State ≥25 ug/m ³ 24-Hours	Location	No. Days State Standard Exceeded
1 2 3 4 5 6 7 8 9 10 11 12 13	Los Angeles W. Los Angeles Lennox Long Beach Whittier Reseda Burbank Pasadena Azusa Pomona Pico Rivera Lynwood Newhall Lancaster	.05 .04 .07 .14 .09 .03 .04 .04 .04 .04 .05 .09	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 52 58 86 NM 61 NM 55 59 NM 58 89 NM	219 158 316 292 NM 161 NM 250 316 NM 269 376 NM	0 0 1 2 NM 0 NM 0 1 NM 2 1 NM	36 10 25 22 NM 18 NM 28 42 NM 46 40 NM	2.50 2.29 4.11 3.47 NM 2.57 NM 2.03 1.84 NM 2.61 2.81 NM	0 0 1 0 NM 0 NM 0 NM 0 NM	3 1 3 0 NM 1 NM 0 0 NM 2 3 NM	23.7 25.3 26.2 32.7 NM 24.1 NM 27.8 23.0 NM 27.1 24.0 NM 12.1	0 1 1 1 NM 0 NM 1 0 NM 1 0	L. A. Bur. AP LAX AP LB AP Fox AFB	ND 226 223 245 ND
16 16 17 17 18 19	La Habra Santa Ana Canyon Anaheim Los Alamitos Costa Mesa El Toro	.04 .03 ^{c)} .04 .06 .08 NM	0 0 0 0 0 NM	0 0 0 0 0 NM	60 28 ^{c)} 59 58 NM 57	342 253 362 602 NM 234	3 0 1 2 NM 0	37 8 26 32 NM 24	2.18 1.09 1.95 2.18 NM 0.90	0 0 0 0 NM 0	0 0 0 0 NM 0	25.6 21.2 24.7 26.0 NM 20.0	1 0 0 1 NM 0	El Toro MCAS	349
22 23 24 29 30 30	Norco-Corona Riverside Perris Banning Palm Springs Indio	NM .02 NM NM .01	NM O NM NM O	NM O NM NM O	NM 58 NM 69 59	NM 341 NM 271 250 228	NM 8 NM 1 0	NM 49 NM 24 23 20	NM 1.23 NM 0.57 0.45 0.52	NM 0 NM 0 0	NM 0 NM 0 0	NM 30.4 NM 19.6 12.8 13.5	NM 1 NM 0 0	March AFB	200
34 34 35 35 37	Fontana San Bernardino ^{e)} Redlands Yucaipa Lake Gregory	.11 .02 NM NM	O O NM NM	O O NM NM	56 57 55 NM 69	372 450 380 NM 173	2 3 3 NM 0	39 41 30 NM 6	1.08 1.44 1.01 NM 0.52	0 0 0 NM 0	0 0 0 NM 0	42.4 38.8 31.0 NM 14.2	4 1 1 NM 0	Ont. AP Nor. AFB	258 232

¹⁾ The Federal (3-hours >.50 ppm) and State (1-hour \geq .50 ppm) stahdards were not exceeded. g) Twenty-four hours \geq .05 ppm with 1-hour ozone \geq .10 ppm, or with 24-hours TSP \geq 100 ug/m³. h) Visibility should be 10 miles or greater on days when relative humidity is less than 70%.

AIR MONITORING STATIONS

- Central
- East San Fernando Valley
- **Northwest Coastal**
- South Coastal
- West San Fernando Valley
- Southwest Coastal
- 84 South Central

- LOS ANGELES CITY
- O NOT IN CITY
- **MAJOR FREEWAY**
- AIR MONITORING BOUNDARY

AIR MONITORING NETWORK

BALDWIN HILLS PROJECT

MAP III-1

RECOMMENDATIONS

The complex nature of the Baldwin Hills warrants further climatological investigation before revegetation plans become finalized. Microclimate data should be obtained on a variety of slopes and exposures and compared with the nearest standard climatological station. This could be accomplished by selecting 24 days, 6 in each season under a variety of weather conditions. This information would be most helpful in selecting the proper plant cover and could avoid possible loss of species with narrow tolerances.

REFERENCES

- Bailey, Harry P. 1966. The climate of Southern California. University of Southern California Press. Berkeley Los Angeles. 87pp.
- Landsberg, Helmut. 1962. Physical Climatology. Gray Printing Co., Inc. DuBois, Pennsylvania. 446pp.
- National Oceanic and Atmospheric Administration. 1976. Local Climatological Data - Los Angeles, California - International Airport 4pp.
- Russell, Richard J. 1953. Climate of California. University of California. Publ. in Geog., volume 2, No. 4. 11pp.
- South Coast Air Quality Management District. 1981. Summary of Air Quality in the South Coast Air Basin. El Monte, California.